C++ Foundation with Data Structures

Topic: Recursion




Recursion

a. What is Recursion?

In previous lectures, we used iteration to solve problems. Now, we’ll learn about
recursion for solving problems which contain smaller sub-problems of the same
kind.

Recursion in computer science is a method where the solution to a problem
depends on solutions to smaller instances of the same problem. By same nature it
actually means that the approach that we use to solve the original problem can be
used to solve smaller problems as well.

So in other words in recursion a function calls itself to solve smaller problems.
Recursion is a popular approach for solving problems because recursive solutions
are generally easier to think than their iterative counterparts and the code is also
shorter and easier to understand.

b. How Does Recursion Work?

We can define the steps of a recursive solution as follows:

1. Base Case:
A recursive function must have a terminating condition at which the function
will stop calling itself. Such a condition is known as a base case.

2. Recursive Call:
The recursive function will recursively invoke itself on the smaller version of
problem. We need to be careful while writing this step as it is important to
correctly figure out what your smaller problem is on whose solution the
original problem’s solution depends.

3. Small Calculation:
Generally we perform a some calculation step in each recursive call. We can
perform this calculation step before or after the recursive call depending
upon the nature of the problem.

It is important to note here that recursion uses stack to store the recursive calls.
So, to avoid memory overflow problem, we should define a recursive solution with
minimum possible number of recursive calls such that the base condition is
achieved before the recursion stack starts overflowing on getting completely filled.

Now, let us look at an example to calculate factorial of a number using recursion.



Example Code 1:

#include<iostream>
using namespace std;

int fact(int n)

{
if(n==0) //Base Case
{

return 1;

}

return n * fact(n-1); //Recursive call with small calculation

}

int main()

{
int num;
cin>>num;
cout<<fact(num);
return O;

Output:
120 //For num=5

Explanation:

Here, we called factorial function recursively till number became 0. Then, the
statements below the recursive call statement were executed. We can visualize
the recursion tree for this function, where let n=5, as follows:



fact(5) finally returns 5 * 24 =120 to the
code which called the function fact(n)

Returns4 *6 =24

Returns3*¥2=6

Returns2 *1=2

Returns1*1=1

Returns 1

We are calculating the factorial of n=5 here. We can infer that the function
recursively calls fact(n) till n becomes 0, which is the base case here. In the
base case, we returned the value 1. Then, the statements after the recursive
calls were executed which returned n*fact(n-1) for each call. Finally, fact(5)
returned the answer 120 to main() from where we had invoked the fact()
function.

Now, let us look at another example to find n™ Fibonacci number . In Fibonacci
series to calculate nth Fibonacci number we can use the formula F(n) =F(n—1) +
F(n—2) i.e. nth Fibonacci term is equal to sum of n-1 and n-2 Fibonacci terms. So
let’s use this to write recursive code for nth Fibonacci number.

Example Code 2:



// Recursive function:

int fibo(int n) {

if(n==0 | | n==1) { //Base Case
return n;
}
int a = fibo(n-1); //Recursive call
int b = fibo(n-2); //Recursive call
return a+b; //Small Calculation and return statement

Explanation:

As we are aware of the Fibonacci Series (0, 1, 1, 2, 3, 5, 8,... and so on), let us assume
that the index starts from 0, so, 5" Fibonacci number will correspond to 5; 6™
Fibonacci number will correspond to 8; and so on.

Here, in recursive Fibonacci function, we have made two recursive calls which are
depicted as follows:

Note: One thing that we should be clear about is that both recursive calls don’t
happen simultaneously. First fibo(n-1) is called, and only after we have its result
and store it in “a” we move to next statement to calculate fibo(n — 2).

It is interesting to note here that the concept of recursion is based on the
mathematical concept of PMI (Principle of Mathematical Induction). When we
use PMI to prove a theorem, we have to show that the base case (usually for x=0
or x=1) is true and, the induction hypothesis for case x=k is true must imply that
case x=k+1 is also true. We can now understand how the steps which we followed
in recursion are based on the induction steps, as in recursion also, we have a base
case while the assumption corresponds to the recursive call.



